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ABSTRACT 
In EN 1993-1-6, several methods are offered for the stability design of shell structures. Most 
elaborate results are found by a GMNIA (“full analysis”, EN 1993-1-6:2017 8.8) where geometric 
substitute imperfections and material non-linearities are accounted for in the numerical model. 
Typically, radial shape deviations are used, which represent a governing eigenmode, see EN 1993-
1-6 8.8.2 (13) and (15). Rules for the maximum amplitude of the imperfection pattern are given in 
Tab. 8.5. 
In practical design however, it is more convenient to use imperfection patterns, the shape of which 
is known a priori. E.g. Rotter/Teng (1989) presented an analytical description for an idealized 
circumferential weld depression, which has been proven to be sufficient for a realistic description of 
the resistance under axial compression. For other load cases and other manufacturing methods, such 
as joining the plates by bolted overlaps, these a priori imperfections have not been described so far. 
In the present paper, a set of generic imperfection patterns for different load cases and different 
methods of manufacture is described by means of truncated double Fourier series. The patterns are 
investigated by exemplary GMNIA, so that the imperfection sensitivity of the different patterns can 
be demonstrated. Using this generic imperfection patterns, the structural engineer is able to script a 
universal imperfection generator. For each individual project, the Fourier coefficients of the 
relevant generic imperfection pattern are introduced. Thus, the aim of the paper is to simplify the 
handling of imperfection patterns with GMNIA. 
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1 INTRODUCTION 
In this study we consider geometrical radial deviations from the perfect cylindrical shape as 
substitute imperfections. We investigate typical sets of these imperfection patterns and their impact 
on the capacity under specific load cases. The patterns are represented by truncated Fourier series, 
the amplitudes of which are determined e.g. from code provisions or from laser scan measurements. 
The aim of this study is to provide easy-to-handle imperfection patterns to be used in GMNIA for 
practical design of tank and silo structures. Note that the authors recommended in a previous paper, 
not to use GMNIA in practical design (chap. 3 thesis 13 in (1)). However, there can be manifold 
reasons where GMNIA is still advantageous, e.g.  
–  Assessment of an existing tank, where imperfections have been measured, which are much in 

excess of the EC3-1-6 (2) provisions, see Fig. 2. 
–  Geometrical conditions, where EC3-1-6 (2) seems to predict unsatisfactory capacity, see 

hypothesis H13 in (3). 
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2 ABBREVIATIONS, TERMS AND DEFINITIONS 

Note:  example sets of coefficient matrices can be downloaded from 
https://peterknoedel.de/search/search.htm   

2D-(elliptical-)Bump  
– simplified Gauss Bell  𝑓, = 𝐴𝑚𝑝 ∙ 𝑒ି൭ೣషೣబరೣ ൱మ ∙ 𝑒ିቌೕషబర ቍమ                                                   (1) 

with Amp: depth; x0; y0 position of centre; dx;dy diameter  

2D-DFT  

DFT for a 2D surface, returns the Fourier coefficients to represent a 2D
surface  

 𝐴, = ଵெ ∙ ଵே ∑ ∑ 𝑤,ଶேିଵୀଶெିଵୀ                                                              (2) 

 𝐴, = ଵெ ∙ ଵே ∑ ∑ [𝑤, ∙ cos (∙∙గே ) ∙ cos (∙∙గெ )]ଶேିଵୀଶெିଵୀ              
 𝐵, = ଵெ ∙ ଵே ∑ ∑ [𝑤, ∙ cos (∙∙గே ) ∙ sin (∙∙గெ )]ଶேିଵୀଶெିଵୀ              
 𝐶, = ଵெ ∙ ଵே ∑ ∑ [𝑤, ∙ sin (∙∙గே ) ∙ cos (∙∙గெ )]ଶேିଵୀଶெିଵୀ              
 𝐷, = ଵெ ∙ ଵே ∑ ∑ [𝑤, ∙ sin (∙∙గே ) ∙ sin (∙∙గெ )]ଶேିଵୀଶெିଵୀ              
The following statements are referring to the x- and y-direction 
respectively: wi,j = data points in the x (circumference) and y (meridian)
direction; M,N = number of data pairs; i = 0 … 2M-1; j = 0 … 2N-1; 
counter of the data points; m = 1 … M; n = 1 … N; counter for the
Fourier coefficients  

D; Lcyl; Lstrake,i; Ti; Ldep;  
dimensions of the cylindrical structure: diameter; total length bottom to
eaves; length of strake; wall-thickness of strake; with i = counter of the
strakes; meridional length of weld depression, see Type A   

DBF   design by formulae (“hand calculation”) as opposite to e.g. numerical
methods (EN 13445-3 5.4)  

DFT  

Discrete Fourier Transform; FT for discrete values – requires equidistant 
spacing of the data points; returns the Fourier coefficients to represent
the data points  

 𝐴 = ଵ ∑ 𝑤ଶିଵୀ                𝐴 = ଵ ∑ [𝑤 ∙ cos (∙∙గ )]ଶିଵୀ                      (3) 

 𝐵 = ଵ ∑ [𝑤 ∙ 𝑠𝑖𝑛 (∙∙గ )]ଶିଵୀ            

 wj = values in the time domain; n = number of data pairs; j = 0 … 2n-1 
counter for the values; k = 1 … n index of the Fourier coefficients  

Double Fourier series,  
for coefficients see Eq. 
(3)   

(truncated) Fourier series for a translatory 2D surface  

 𝑆, = భ,భଶ + ∑ ∑ [cos (∙௫∙ଶగೞೝೌೖ) ∙ 𝐴,cos ((𝑛 − 1) ∙ 𝜃)]ேୀଵெୀଵ         (4)  

Double Fourier series,  
for coefficients see Eq. 
(2)  

(truncated) Fourier series for a general 2D surface  

 𝑆,ೕ = బ,బଶ + ∑ ∑ [𝐴, ∙ cos (∙∙ଶగ் ) ∙ cos (∙∙ଶగ்ೣ )]ேୀଵெୀଵ                  (5) 
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 𝑆,ೕ = ∑ ∑ [𝐵, ∙ cos(∙∙ଶగ் ) ∙ sin(∙∙ଶగ்ೣ )]ேୀଵெୀଵ             
 𝑆,ೕ = ∑ ∑ [𝐶, ∙ sin(∙∙ଶగ் ) ∙ cos(∙∙ଶగ்ೣ )]ேୀଵெୀଵ             
 𝑆,ೕ = ∑ ∑ [𝐷, ∙ sin(∙∙ଶగ் ) ∙ sin(∙∙ଶగ்ೣ )]ேୀଵெୀଵ             
 𝑆, = 𝑆,ೕ + 𝑆,ೕ + 𝑆,ೕ + 𝑆,ೕ        

E; Epl; ν; fy  material parameters: Young’s modulus 210 GPa; plastic modulus 210
MPa; Poisson’s ratio 0,30; yield limit 235 MPa;  

EC3  short form for EN 1993 (2)  

Fourier series  
Fourier sum  

(truncated) sum of harmonic functions with the Fourier coefficients A
and B as amplitudes (4)  

 𝑆 = బଶ + ∑ [𝐴 ∙ cos ቀ𝑘 ∙ 𝑥 ∙ ଶగ ቁ + 𝐵 ∙ sin ቀ𝑘 ∙ 𝑥 ∙ ଶగ ቁ]ೌೣୀଵ            (6) 

 k = 0 … kmax; index for the Fourier coefficients; i = counter for the
evaluated data points; j = counter for the kmax coefficients used;  

FT  

Fourier Transform; converts a function from the “time domain” into the
“frequency domain”; thus, output of the FT are the coefficients of the
Fourier series (4)  

 𝐴 = ଶ்  𝑓(𝑥) ∙ cos (𝑘 ∙ 𝑥 ∙ ଶగ்) ∙ 𝑑𝑥்                                                   (7) 

 𝐵 = ଶ்  𝑓(𝑥) ∙ sin (𝑘 ∙ x ∙ ଶగ்) ∙ 𝑑𝑥்      

 𝑘 = 0⋯∞;   T = period of of the function    

FTQC A, B, C (steel) 
Tol. class 4, 3, 2, 1 (alu) 

fabrication tolerance quality classes, defined in EC3-1-6 8.4 (2); for
aluminium, these are given in EN 1090-3:2019 H.2–H.4 (5)   

GMNIA geometrically and materially nonlinear analysis with imperfections
explicitly included, term defined in EC3-1-6 1.3.5.10 (2) 

Inverse FT 
Inverse DFT  

Converting a function from the frequency domain (back) into the time
domain; synonymous for Fourier series or double Fourier series  

Weld depression 
Type A, B  

Alternative meridional shapes of a circumferential weld depression
according to (6) and (7) 

 𝑤 = 𝑤 ∙ 𝑒ିగ∙ഊೣ ∙ [cos ቀగ∙௫ఒ ቁ + k ∙ sin ቀగ∙௫ఒ ቁ]                                         (8) 

with  λ = 2,444 * √(R*T); k = 1 for Type A (tangent at the weld parallel
to the meridian) and k = 0 for Type B (kink at the weld); note, that this
formulation is only valid for x > 0; meridional size of depression
(distance of zero crossings): Ldep = 3,666 * √(R*T) = 1,5 * λ  

3 STATE-OF-THE-ART 

3.1 Imperfections with meridionally compressed cylinders 
An extensive discussion of imperfections is given in (8). Some of the content is repeated here with 
focus on describing and modelling imperfections for GMNIA. 
It seems, that due to the dramatic reduction of capacity under meridional compression even with 
small imperfections, most of the research focused on this load case. Consequently, there is a vast 
number of scientific contributions on this matter, an overview can be found in (9). 



 

4 
  
 

In (10), a numerical elasto-plastic approach was used. The circumferential weld depression was 
based on measurements given in (11). 
Teng and Rotter developed substitute weld depressions (6), (7) which are based on the theoretical 
bending shape of a meridian adjacent to an imposed radial displacement along a circumference. 
(12) investigated the influence on random imperfections on the capacity of axially compressed 
cylinders. With localized imperfections far deeper than the limits of FTQC C, they achieved 
experimental buckling loads, the mean of which is 77 % above the prediction of EC3-1-6 (2); 
explanations are not given in the paper. Aluminium shells with random imperfections have been 
investigated in (13). However, the design rules derived for EC9-1-5 (14) seemed to have been 
faulty, which has been discussed in length in (15), (16).    
3.2 Imperfections with radially compressed cylinders 
The critical stresses are very low (app. 3 MPa for Tank B in chap. 4). After that, the loss due to 
imperfections is much smaller, compared to axially compressed cylinders. Furthermore, the 
buckling behaviour is “benign”: after bifurcation a stable postbuckling tensile membrane state 
develops, which allows for increasing loads associated with big radial displacements. Exemplary, 
the reader is referred to (17), where further references can be found. 
Increasing use of cost-efficient laser survey of entire tank surfaces and subsequent GMNIA made 
evident, that a localized depression even with multiple depth of the codified limit imperfection does 
by far not have the influence on the capacity of the shell, that a more regular imperfection would 
have (see e.g. (18)). Thus, using eigenmode-imperfections with an amplitude taken from the 
respective FTQC, yields very conservative results. 
There is another effect: the DBF designer ends up with a critical circumferential stress reduced by 
an empirical factor. The FEA designer approaches the bifurcation load asymptotically and then 
benefits from postbuckling membrane action. Thus, the former is designing very conservative 
against bifurcation, while the latter tackles a real 2nd or 3rd order ultimate load, see Fig. 7 b). 
3.3 Measuring and classifying imperfections 

 
 

Fig. 1.  Representation of the Fourier amplitudes (19)  
41 coeff. in axial, 40 in circumf. direction;  

big amplitues are grouped in the long-wave range   

 
Fig. 2.  Laser scan of an anonymized tank (page 19 in (20)) 

D = 19 m; Heaves = 19 m; Tact ≈ 14; 12; 10; 8; 6; 5; 5; 5; 
year built: app. 1969; 

deviations from a perfect cylinder, wextreme ≈ +60/–95 mm;  
yellow and redish is outward; green and blue is inward;  

In (21) and (19) an accurate description is published on the measurement and evaluation techniques 
used on a 10.000 ton grain silo in Port Kembla, Wollongong, Australia. The radial deviations found 
were evaluated by means of a DFT, the amplitudes of which are shown in Fig. 1. These 
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measurements were re-evaluated by (22), including measurements of two other quasi-identical Port 
Kembla silos and focusing on different choices of Fourier series. It was found that the graphical 
representation of the Fourier coefficient matrices of the three different silos was very similar. 
Significant amplitudes are grouped along the first harmonics, and from the 20th harmonic onwards, 
the contributions may be neglected from an engineering point of view. 
In (23), spiral welded tubes of app. 800 and 1.100 mm diameter were investigated. Double Fourier 
series were used to describe the surface imperfection pattern. In the next step, the mapping onto a 
FE grid was done by a Matlab command (23). 
In engineering practice, laser survey of big structures such as tanks has become affordable routine. 
An example is shown in Fig. 2. Typically, with these tanks built in the 70s, imperfections are found, 
which are much in excess of the tolerances given in present design codes, e.g. EC3-1-6 8.4 (2). 
Dimple tolerances for exemplary structures are given in chap. 4. 
In 1996, the authors published a typology of substitute imperfection patterns for the stability check 
of axially loaded cylinders (24). This study was extended in (8), when fabrication methods and load 
cases were considered additionally. 

4 EXAMPLE STRUCTURES 

Table 1.  Dimple tolerance depth [mm] in FTQC A; B; C; acc. EC3-1-6:2017 8.4.4 (2) (steel) 
or Tolerance Class 3; 2; 1; acc. EN 1090-3:2019 H.2–H.4 (5) (aluminium) 

Example structure Meridional compression Circumferential 
compression Weld 

Tank A; Teq = 20 mm 14; 23; 37; 76; 127; 203;  3; 5; 8;  
Tank B; Teq = 10 mm 8; 13; 20; 17; 29; 46;  2; 3; 4;  
Tank C; T =   5 mm 4; 6; 10; 17; 29; 46;  0,8; 1,3; 2,0;  
Silo A; Teq = 2,5 mm 1,2; 2,4; 4; 9; 15; 23;  0,4; 0,6; 1,0; 
Silo B; Teq = 4,5 mm 2; 3; 5;  9; 15; 24;  0,7; 1,1; 1,8;  

Silo X; T = 3 mm 0,9; 1,5; 2,4;  3; 5; 8;  0,5; 0,8; 1,2;  
In this study, we consider three tanks and three silos of typical size. From these we derive the range 
of parameters needed for the proposed method. All dimensions given are approximate. 
TA: District heating tank Rostock, courtesy of IPU Karlsruhe (25)  

D = 34.000 mm; Lcyl = 52.000 mm; Lstrake = 2.900 mm; T = 11 mm – 38 mm 
in this paper Teq = 20 mm; Ldep = 2.138 mm  

TB: Soyk/Knödel/Ponomarev (20) … 
D = 20.000 mm; Lcyl = 20.000 mm; Lstrake = 2.400 mm; T = 6 mm – 15 mm  
in this paper Teq = 10 mm; Lstrake = 5.000 mm; Ldep = 1.159 mm  

TC: Ummenhofer’s and Knoedel’s teaching tank (26)  
D = 10.000 mm; Lcyl = 10.000 mm; Lstrake = 2.000 mm; T = 5 mm; Ldep = 580 mm  

SA: Carbon steel silo anonymous, courtesy of IPU, Karlsruhe  
D = 2.900 mm; Lcyl = 14.000 mm; Lstrake = 2.000 mm; T = 2 mm – 3 mm;  
in this paper Teq = 2,5 mm; Ldep = 221 mm  

SB: Aluminium silo anonymous, given in (15)  
D = 3.000 mm; Lbin = 10.000 mm; Lstrake = 2.500 mm; T = 4 mm – 5 mm;  
EN AW-5754 O/H111 (EN 485-2 (27)); in this paper Teq = 4,5 mm; Ldep = 301 mm  

SX: Silo model for structural tests “P3” (28), see also (29) 
D = 900 mm; Lcyl = 1.000 mm (with stringers) + 1.250 mm; T = 3 mm 
4 pairs of ribs at the local supports FL 25x8, e = 58 mm;  
EN AW-5754 O/H111 (EN 485-2 (27)); coupon tests performed by KIT-VA showed 
mechanical properties corresponding to EN AW-5083 O/H111 (EN 485-2 (27)) 
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5 GENERIC IMPERFECTION PATTERNS 

5.1 Motivation 
Most of the findings in chap. 3 are based on research projects, where measuring and evaluation of 
imperfections has been going on for months. This is not the time scale, in which the typical 
practitioner is trying to complete a re-evaluation of an existing tank. Therefore, we propose generic 
imperfection patterns, which are simplified and easy to use for the practitioner’s GMNIA. 
Naturally, the accuracy of the calculations is reduced due to the simplification. However, it will be 
demonstrated, that the results are still within reasonable accuracy for practical design. 
The advantage of using a Fourier representation is, that the imperfection surface itself is described 
to a desired accuracy. Based on this, the nodal initial radial position can be generated for any 
arbitrary mesh, independent of the mesh size or element shape. Thus, no restrictions appear during 
optimization of the mesh, convergence studies, etc. 
5.2 Hypotheses and assumptions 
H1 End rings and intermediate ring stiffeners provide sufficient radial stiffness to prevent 

significant radial deformations in a global buckling mode. Guidance for sufficient stiffness has 
been given in e.g. (17), see also EC3-4-2:2017 eq. 7.24 ff (30). 

H2 It is sufficient to perform independent stability verifications of sub-divisions of the cylinder 
between end rings and/or intermediate stiffeners. Due to H1 global mode-shapes will not be 
governing. From H2 follows, that for each sub-division an individual generic imperfection 
pattern may be used. 

H3 Amplitudes of the imperfection pattern, that amount to ≤ 10 % of the maximum amplitude, 
have no significant impact on the capacity of the shell, see Fig. 6 b). 

H4 One of the generic patterns describes equidistant circumferential welds. These need not 
coincide with the actual configuration, but provide comparable capacity as GMNIA result. 

H5 The out of plane imperfections of a rolled and curved plate/panel prior to bolting or welding 
are assumed to be random. From an engineering point of view, this seems to be sufficient for 
the scope of the present study. From a scientific point of view, a more precise distinction can 
be made with respect to hot or cold rolling of the plate (see different levels of tolerances for 
structural steel hot rolled plates in EN 10029 Tab. 1 and structural steel cold rolled plates in 
EN 10143 Tab. 1), different materials (structural steel, stainless steel, aluminium) and cold or 
hot curving of the panel. 

H6 Joining the strake’s plates by bolted overlap does not induce significant imperfections. For 
DBF, reduction factors of 0,7 (meridional compression EC3-1-6 D.3.2 (1) (2); EC9-1-5 A.3.2 
(1) (14)) and 0,9 (circumferential compression EC3-1-6 D.3.3 (1) (2); EC9-1-5 A.3.3 (1) (14)) 
are provided. In a GMNIA it is advantageous to model the actual offset of the mid-surfaces of 
the plates. 

5.3 Curved panels without weld 

     
Fig. 3.  Laser scan of example structure SX in chap. 4, plan view on radial deviations from a fitted perfect cylinder   
a) data from a horizontal slice of 5 mm height; b) detail with arbitrarily drawn bounding lines of 0,5 mm distance    
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From the data given in Fig. 3 it can be concluded: 
–  Within a patch of 5 mm (meridional) x 50 mm (circumferential) there are app. 20 readings, 

which corresponds to a medium quadratic measuring grid of 3,5 mm. 
–  Apart from global out-of-roundness and other long-wave deviations, no localized or short-

wave imperfections can be seen. 
–  Obviously, the scatter band of 0,5 mm width is representing rather the uncertainty of the 

measurement than real deviations of bumps in the shell wall. We assume, that the actual 
surface imperfection amplitude is smaller than ±0,15 mm which corresponds to ±T/20.  

–  In a stick measurement, this value would correspond to a bump depth of 0,3 mm or T/10, 
which is by far better than FTQC A, see Table 1. 

–  Following hypothesis H5, our proposal is to use random imperfections within a range of ±T/20. 
–  Similar results have been found in (31) with measurements on wind turbine towers, where a 

2 mm scatter band was associated with 30 mm wall thickness. 

 
Fig. 4.  Exemplary Fourier coefficients for row B, a set of 30 random numbers {–1 mm; +1 mm}  

note, that b0 is per definition zero   

Table 2.  Exemplary Fourier coefficients for random numbers [mm] row B, see Fig. 4  
Index 0 1 2 3 4 5 6 7 8 

A 0,339 0,174 0,047 –0,128 0,023 0,040 0,096 –0,155 0,047 
B 0 –0,016 –0,026 0,222 –0,001 –0,068 0,025 –0,321 –0,055 

Index 9 10 11 12 13 14 15   
A 0,055 –0,085 0,020 –0,064 –0,023 -0,089 –0,258   
B 0,152 0,005 –0,202 –0,044 –0,094 –0,077 0   

  
The appropriate statistical model is termed white noise. In a very simple non-black-box procedure 
for the one-dimensional case, we generated 3 sets of random numbers by using an EXCEL feature 
(rows A, B and C). Each set had 30 values, so we could perform a DFT and determine 15 Fourier 
coefficients a (+ a0) and b. Due to lack of space only row B is documented exemplary, see Fig. 4 
and Table 2. 
A scheme for 2D random imperfections will be given in a future study. Imperfections for the panel 
itself are only needed with bolted tanks. In the present GMNIA examples we consider welded tanks, 
where the imperfections of the panels are dominated by the weld depressions. Thus, the panel 
imperfections don’t need to be modelled. 
5.4 Circumferential weld depression  
The weld depression Type A developed in (6), (7) is a well established geometrical substitute 
imperfection for welded cylindrical structures under meridional compression. Due to the symmetry 
plane in the middle of the weld only cosine terms are needed for a Fourier representation. Due to 
the periodicity of the Fourier sum, equidistant welds can be described in one go. 
The flanks of the weld depression have a fixed length, which is related to the bending half wave λ 
(see chap. 2). Thus, the Fourier coefficients, capturing the shape of the depression on one side and 
the periodicity on the other side, are depending on the ratio of the size of the depression and the 
length of the strake. 
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The Fourier coefficients can be determined by rigorous integration after inserting Eq. (8) in Eqs. 
(7). This leads to lengthy terms which are not documented here due to lack of space. Integration 
limits are from x = 0 (symmetry plane in weld) to x = Lstrake/2 (symmetry plane in mid-strake). As 
can be seen from the examples given in chap. 4, the relation Ldep/Lstrake ranges from 0,11 to 0,74 for 
typical dimensions.  

      
Fig. 5.  a) Normalized Fourier coefficients anorm for the weld depression Type A (6), (7),  

depending on the relation of Ldep/Lstrake  
b) Using one set of Fourier coefficients for equidistant dircumferential welds; 

the meridian is divided in 200 sections à 100 mm; the circumference is divided in quarters à 90°   

 𝑎 = ∙ೞೝೌೖ௪బ∙ఒ         (9) 

A convenient way to normalize the coefficients a is given in Eq. (9). Typical results are given in 
Table 3 and Fig. 5. 

Table 3.  Normalized Fourier coefficients anorm for the weld depression Type A (6), (7),  
depending on the relation of Ldep/Lstrake , see Fig. 5  

Ldep/L 0 1 2 3 4 5 6 7 8 
0,25 1,273 1,269 1,213 1,018 0,711 0,434 0,254 0,151 0,093 
0,50 1,273 1,211 0,717 0,250 0,096 0,038 0,021 0,010 0,007 
0,75 1,328 0,974 0,265 0,057 0,020 0,008 0,004 0,002 0,001 

5.5 Meridional weld depression  
Information on longitudinal weld depressions will be given in a future study. The effect of 
imperfections is described in (32) and (33). 
5.6 Localized bump 
In many cases, the dominating pattern is a localized bump, see Fig. 2. When the bump is small 
compared to meridional length and/or circumference of the cylinder, coefficient matrices are 
needed, which might have more than 20 significant elements in each direction. An application 
example is given in chap. 6.3. We use Eq. (1) to describe the bump, because this gives a more 
pronounced information on where the bump ends compared to other bump functions found in 
literature. 
5.7 Application rules 
–  Multiple, equidistant weld depressions along the meridian can be modelled by a single set of 

Fourier coefficients for the Rotter/Teng shape due to the inherent periodicity, as shown in 6.2 
and Fig. 6.  

–  If the structure is made up of stepped wall-thickness, each of the circumferential welds should 
have a different amplitude. In this case it is recommended, to model each of the welds 
individually along a meridional range of ±Lstrake,i.  

–  A more complex imperfection pattern can be generated by adding up the coefficient matrices of 
the individual patterns.   
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  ൣ𝐴,൧௧௧ = ൣ𝐴,൧௧௧_ଵ + ൣ𝐴,൧௧௧_ଶ +  ⋯       (10)  
 If more convenient, adding up can be done after generating the initial imperfections 

  ൣ𝑤,൧௧௧ = ൣ𝑤,൧௧௧_ଵ + ൣ𝑤,൧௧௧_ଶ +  ⋯       (11)  
–  If weld depressions and/or an excessive localized buckle is modelled, the plates in between 

may remain perfect. 
5.8 Stainless steel and aluminium 
Basically, the proposed generic imperfection patterns can be used with stainless steel structures and 
aluminium structures as well. 
In EC3-1-6 (2) and EC9-1-5 (14) it is implied, that the imperfection sensitivity of stainless steel 
shells or of aluminium shells is identical or very similar to those of carbon structural steels, which 
can be seen from the design curves in the elastic regime. From a welding engineer’s point of view, 
this is a very questionable assumption, because the range of welding parameters, heat input, thermal 
capacity and heat flux are really different (34).  

6 EXEMPLARY GMNIA RESULTS FOR STEEL TANKS 

6.1 Modelling and mesh size 

   

  

Fig. 6.  a) Numerical simulation – Tank B with weld depressions and mesh  
b) GMNIA/I-LBA results: imperfection sensitivity under axial compression 

c) Eigenmode with w0/T =2 and 14 circumferential waves 
d) Merid. membr. stress vs. end shortening; non-convergence at 83 MPa; first yield at 71 MPa; bifurcation at 22 MPa   

Specification of model and calculation procedure: ANSYS 20.2; global coordinates: X, Y are 
spanning the bottom plate, Z lies in the axis of revolution (right-hand rule); Shell 181 with full 
integration; units used are cm and kN; boundary conditions: bottom edge ux,y,z = 0, top edge ux,y = 
0; loads are incremented by automated time-stepping, first step corresponds to Δσx = 0,325 MPa 
resp. Δp = 0,56 kN/m²; modified Newton-Raphson scheme is used for equilibrium iterations;  
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6.2 Meridional compression with weld depression 
Some exemplary GMNIA results for tank B (see chap. 4) are given in Fig. 6. For convenience, 
these are compared with the code provisions acc. to EC3-1-6 (2). Tank B has a relation Ldep/Lstrake = 
0,23. The Fourier coefficients have been determined according to chap. 5.4. Thus, the values are 
somewhat above the values given in Table 3 row 1. The imperfection sensitivity is in reasonable 
agreement with what should be expected acc. to (35), where the present results are conservative. 
This could be improved by a finer mesh at the weld depression. 
6.3 Circumferential compression with localized bump 

   
 

  

Fig. 7.  a) Numerical simulation – Tank B (but D = 16 m) with localized bump at 0,7 L (d ≈ 1,70 m) and mesh  
b) GMNIA/I-LBA results: imperfection sensitivity under external pressure 

c) Eigenmode with w0/T =2 and 14 circumferential waves 
d) Merid. membr. stress vs. end shortening; non-convergence at 3,90 MPa; bifurcation at 2,19 MPa   

7 OPEN QUESTIONS AND FURTHER RESEARCH 
Although the proposed method seems to be quite promising in terms of simplifying the handling of 
imperfections in GMNIA, more work has to be done to confirm the hypotheses and assumptions 
given in 5.1 and gain more experience. 
–  The authors are currently having industry projects, where the proposed method will be applied. 

These projects will be the basis for extension of the proposed method. 
–  There is contradictory information in meridional weld depression: in (32), these depressions 

were investigated assuming the same depth as circumferential depressions, while in the recent 
measurements of (31) no significant meridional depressions were found. 

–  The influence of the size of a localized imperfection has not been investigated so far. 
–  By surveying a bolted tank, hypotheses H5 and H6 could be confirmed. 
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–  Interaction of different types of imperfections with different load cases has not been 
investigated systematically so far. The circumferential weld depression, which is a severe 
imperfection for axial compression, is at the same time a ring stiffener with external pressure. 

8 SUMMARY AND ACKNOWLEDGMENT 
In the present study, the use of simplified imperfection patterns is proposed, which are represented 
by single or double Fourier series. This can facilitate the transfer of imperfections onto a numerical 
model, which is needed for GMNIA calculations. Examples for simplified patterns are given and 
the derivation of the respective Fourier coefficient matrices is shown. 
The method is demonstrated with two application examples: a tank under axial compression with 
multiple weld depressions, and a tank with a localized bump under external pressure. Proposals for 
further research and for extending the method are given. 
The authors are much obliged to Sergej Ponomarev, Matthias Hendriksen and Dr. Günter Fischbach 
from Ingenieurgesellschaft Dr.-Ing. Fischbach mbH, Erftstadt, Germany for providing an 
anonymized example tank (see Fig. 2). 
Wolfgang Lang from P+W Metallbau GmbH & Co. KG, Meckenbeuren, Germany gave us 
permission to re-evaluate the data from the ZIM project (28), which is very much appreciated. The 
support of Marcel Mott from KIT Steel and Lightweight Structures is gratefully acknowledged. 
Marcel provided raw data from the ZIM project (28) and helped with the re-evaluation by means of 
CloudCompare.  
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