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Abstract

For design purposes many attempts have been made to allow for char-
acteristic imperfections in shell stability analysis. Due to the different tools
available, i.e. classical analysis, numerically solved equation systems, FEM.
imperfection patterns of different complexity have been incorporated in the
problem description. After presenting some widely used characteristic pat-
terns a two level approach is proposed for design purposes.

1 Introduction

Imperfections are known to be the reason for the difference of the performance of

real thin walled shells under compressive loading compared to the critical load of an
ideal shell.

Nowadays, powerful numerical tools are available which allow for arbitrary shell
shapes, boundary conditions and loading as well as geometrical and material nonlin-
earities. Simple rational substitute imperfections to be introduced into shell analysis
seem to be the missing link towards a realistic prediction of shell performance.

This paper outlines the state of the art in shell imperfections and proposes some
design rules.
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2 Substitute Imperfection Patterns

2.1 History

According to Arysik’s survey of the literature (1994 [28]) Mallock 1908 [32] and Llly
1908 [29] were the first to 'discover’ {local) buckling phenomena in experiments
with cylindrical shells. At the same time Lorenz 1908 [30] did the first theoretical
investigations in this topic. In 1932 however Fluegge [13] seemed to be the first to
realize the remarkable difference between the 'classical solution’ for the critical stress
(eq. 1) of a cylindrical shell under axial compression and experimental results.

od £ 220.605E£' (1)
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From that time on a long list of researchers tried to incorporate reasonable geomet-
rical imperfections into their analyses and still the buckling loads obtained in shell
tests were lower.

theoretical experimental
cr,imperfect > gy (2)

o)
This fact motivated the 'quest of worst case imperfections’ — the aim was to knock
down the findings of the classical buckling analysis. The imperfection patterns
used were strongly dependent on the tools available and on the tvpe of analysis
which could be handled as easy as possible. Harmonic sine/cosine patterns were
used as substitute imperfections in analyses *by hand’ and eigenmodes were used in

numerical analyses.

On the other hand it was understood, that real imperfections are rather non-
harmonic, non-eigenmode patterns with random features. It was suspected, that
the weld shrinkage at circumferential welds plays a key role in the performance of
shells in civil engineering.

Some widely used models are presented in the following. For simplicity empty
cylinders under pure axial compression are considered only.

2.2 Model I: Regular Harmonic Pattern

The first imperfection pattern to be used were harmonic waves in circumferential and
longitudinal direction of the shell (e.g. Donnell 1934 (6], v.Karman/Tsien 1941 [19],
Donnel/Wan 1950 [7]). Thielemann/Dreyer 1956 [37] used a modified formulation
for the buckling mode, which was used as shape funktion for the initial imperfections
as well:
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Based on results of Donnell some of the quantities were fixed 1o the following values:
I,/ls = 0.728 (ratio of circumferential to longitudinal half wave length}: h=0.18
c=0.03;d=0.

Remark: It is known that the 'diamond buckles’ are wider in circumferential direc-
tion. So it should read [./{, = 0.728 instead.

This pattern was supposed to represent the critical eigenmode. It shows the remark-
able decrease of the ultimate load of the shell even for very small imperfections (see
fig. 1). For imperfection amplitudes of wo/T > 0.4 the structure shows no critical or
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Figure 1: Stress—Strain Diagrams of Elastic Cylinders under
Axial Compression (from Thielemann/Dreyer 1956 (37])

ultimate load. The axial stiffness is so much reduced, that the load-deflection-path
goes continuously into the ’postbuckling’ state. From the experience with imper-
fections of real shells and buckling tests of model shells it was clearly felt however,
that these results were much too pessimistic to be used for design purposes.

2.3 Model II: Meridional Multiwave — Axisymmetric Im-
perfections

A recent literature survey on theoretical work on axisymmetric imperfections was
done by Werner 1993 [40]. He compared most of the known studies and tried to
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find unique information on the imperfection sensitivity of a shell with 2/T = 1000.
A sample of the work is presented in this section {axisymmetric. along the meridian
multiple-wave imperfections) and in section 2.4 (single axisymmetric imperfections).

Axisymmetric bulges which are regular sinusoidal in meridional direction were in-
vestigated by Koiter 1963 ([26], [27]), Hutchinson 1965 {16] and Teng/Rotter 1992
(36].

The meridional shape is chosen to be (notation of Hutchinson)
Wo/T = ~£, cos qi;— (4)
where £, = w /T
and the critical number of full waves (Koiter) along the meridian is given by

% = R/T 12(1~v?) (3)

In that way the shape of the imperfection corresponds to the critical wavelength

47?2 - R.-T

A2y = et
cr.N== \/m (6)

Aan=o = 3.456-VE-T  (forv=103)

of the axisymmetric eigenmode of the perfect shell and is by a factor of v/2 smaller
than the bending full wave

472 . R-T

A2 —
bend m

Abend =~ 2-2.444 .V R-T (for v =0.3)

(7}

Teng/Rotter simulated the analytical solutions of Koiter and Hutchinson by FEN.
They found that a multi wave pattern with a minimum of 9 consecutive meridional
half waves gives the same results like a shell of infinite length with an infinite number
of axisymmetric imperfections. The ’knock down factors’ to be expected with this
type of imperfection is shown in fig. 2. Mark that & denotes the double amplitude
of the imperfection used in the FEM.

Axisymmetric bulges which are irregular in meridional direction were investigated
by Knoedel 1995 [25]. He used the meridional shape which corresponds to the
lowest critical eigenvalue coupled to an axisymmetric eigenmode {and accounts for
the boundary conditions), and obtained a buckling coefficient o« = oi™P/gP =
0.27 (R/T = 1000; wo/T = 1). Since the imperfection pattern used cannot be
described @ priors, but is a result of the nonlinear prebuckling calculation (allowing
for boundaries, material and geometrical nonlinearities) the pattern was denoted as
a procedural imperfection.

-90-



10 T T T T T T
LR} s FEH Resuliz -1
— Koiter't general Thesey (17451

- R === Kailer's tpecial theory (1963} o
b ——— Hulthinson (17451
>

0é |-
=
E-
=
s L
-
ot |
=
H
[ ]

9.2 -

0 0s 10 15 1.0

imperiection amplilude 8 /t

Figure 2: Results from Teng/Rotter and other authors (from [36])

2.4 Model III: Single Axisymmetric Bulge

In 1963 Fischer [12] published results for a single axisymmetric imperfection which
has a normalised depth of & and which has a dimensionless length of 2z along the
meridian. The shape of the imperfection is given by

w, = acos P (3)
where § = %
andw = w ED;F
wip = ET_

Typical results for B/T = 800 and L/R = 0.865 are shown in fig. 3. The upper
curve (¢ = 0.0688) is obtained with a single half wave along the meridian. The

lower curve (¢ = 0.02) is obtained with an imperfection size which corresponds to
the bending double half-wave of the shell. '

Babcock/Sechler 1963 [3] used an axisymmetric imperfection, which has one sine
half wave along the meridian. Since this does not seem to have relevance for civil
engineering structures, it will not be discussed in this place.

Juercke/Kraetzig/Wittek 1983 [L7] investigated an elastic shell (B/T = 1428; L/R
= 3) with a toroidal imperfection. The supported edge was pinned, the loaded edge
was free. The meridional shape of the axisymmetrical bulge consisted of four equal
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Figure 3: Results of Fischer {12], wo/T = 0.303c

sized circular sections, the full wave length was chosen to be
Im=L/10=113VvER-T (9)

which is roughly 2.3 times greater than the bending wave length. For an imperiection
depth of wo/T = 4.3 the buckling coeficient was found to be

= Pwo/T=4.3/PwufT=0 = 0.330 (10)

Teng/Rotter [36] studied the effect of different single axisymmetric imperiections
(compare section 2.3). They found that single imperfections give some 25% higher
buckling loads for wp/T = 1 than the above multi wave pattern (see fig. 4).

2.5 Model IV: Eigenmodé

Imperfections in the shape of the eigenmode of the perfect structure have been used
by many authors. In a first step the (critical) eigenmode of the perfect struture is
determined by an eigenvalue analysis. In a second step the normalised deflections
are scaled and superimposed onto the original perfect structure. The axisymmetric
‘procedural imperfection’ used by Knoedel [25] (non-critical mode, see section 2.3)
is a special case of this imperfection model.

Eckstein 1983 investigated a cylindrical panel (using symmetiry conditions) of ap-
prox. 7° angle of aperture which is about 1/50 of the circurmnference. With an inward
orientated imperfection in the shape of the first eigenmode the ultimate load of the
shell drops to 0.776 of the perfect shell, when the imperfection depth 1s set to only
wo/T = 0.05.
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Figure 4: The effect of different axisymmetric imperfections
(from Teng/Rotter [36])

Wunderlich and co-workers published many studies on img)erfecn shells, mainly with
dished ends under internal pressure ([42], [43]). These are cited here for reasons of
completeness and are not discussed in detail.

2.6 Model V: Local Buckle

There are only few studies where a single local imperfection is used. Babcock [2]
presented 1968 results of investigations. A further study was recently published by
Knebel/Schweizerhof [20] where a local inward deviation in a sinusoidal shape is
generated in a 36° section of a cylindrical shell. Figure 5 shows the results of the
finite element calculations.

There seems to be a relation between cutouts in shells and local imperfections. The
modelling of single local imperfections needs a lot of computational time because
the whole shell has to be generated. This seems to be the reason for the few inves-
tigations which were undertaken.

Schulz postulated the equivalence of a cutout in the shell wall and a local imperfec-
tion of infinite depth [35). Although this does not hold with respect to the stress-
strain state (there are no section forces perpendicular to the edges of the cutout
whereas a deep buckle induces deviating forces into the shell) it can be used to dis-
cuss lower bounds of the buckling strength of a shell. With experiments on cylinders
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Figure 5: Influence of imperfection depth (Knebel/Schweizerhof 1995 [20])

with quadratic cutouts under pure bending Knoedel/Schulx 1988 [21] found a lower
bound of the buckling stress of the meridional free edge of the cutout. They assumed
that there is a limit cutout size, beyond which no further reduction of the buckling
stress will appear.

With this idea transferred to imperfections one can conclude from Knoedel's experi-
ments “series A’ [25]: Even with big radial imperfections (although within the ECCS
tolerances) and very poorly manufactured rims (gaps of as much as 3 min between
adjacent parts of the shell are reported) the buckling stress does not fall below the
DIN 18800 curve (close to the ECCS regulations).

2.7 Model VI: Irregular Pattern

Arbocz/Babcock [1] determined some lower harmonics in a two dimensional Fourier-
decomposition of the imperfections of the shell. By application of the "Multimode
Analysis’ different combinations of harmonic imperfection patterns associated with
characteristic amplitudes were introduced. The numerical and experimental results
were compared and the combination which results in buckling loads closest to the
exprimental results was determined.

Real irregular imperfection patterns were investigated by Ummenhofer [39] who
generated the shape for the finite element model directly by use of the measured grid
of surveyed specimens (compare [38]). The influence of the maximum imperfection
depth on the buckling coefficient is shown in fig. 2.7 where max &p is the maximum
deviation against the template or rod of ECCS R4.6 fig. 2 (8].
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Figure 6: Influence of the imperfection depth on the buckling
coefficient of a shell with random imperfections and clamped
edges (from Ummenhofer 1996 (39])

3 Substitute Imperfections for Engineering Pur-
)

poses

3.1 Procedure Required

The numerical procedure required for the design of thin walled shells is as iollows:

— generate the shell structure

— impose the below imperfections on the level required/desired

— impose design loads, allow for loading imperfections if required/desired
— calculate the load-deflection path, allow for geometrical nonlinearity

— allow for material nonlinearity if this is required by the code used (depending
on geometrical and material parameters)

— search for bifurcation or ultimate loads whichever are lowest

The amplitude of the substitute imperfection may be chosen such that besides the
real geometrical imperfections the effects of all other imperfections are covered, such
as material inhomogenities, residual stresses, loading imperfections (this is discussed
in further detail below).
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3.2 Level I: Single Axisymmetric Depression

Theoretical and numerical studies show, that axisymmetric imperfections are most
detrimental to the structural behaviour of the shell. Therefore it seems sufh-
cient. to use a single axisymmetric imperfection in design. Based on the results
of Teng/Rotter the half wave length should be closest to

Asubst.N:D =244VR-T _ (11)

In choosing the imperfection amplitude two aspects have to be observed:

— A manufacturing limit imperfection depth has to be chosen according to the
process of manufacturing and the abilities of the manufacturer. According to
a proposal of Rotter (33] which is based on the current ECCS regulations

1
(w0/T )y = 55 VEIT (12

mayv be used for 'quality construction’, 1/16.5 would be ‘poor’, 1/40 would
be ’excellent’. The chosen manufacturing limit imperfection depth has to be
proved on the completed shell by means of the ECCS template.

— The design imperfection depth which is needed to calibrate the imperfection |
pattern used in the calculations has to be chosen greater than the manu-
facturing limit imperfection depth, if it shall cover the effects of residual
stresses, loading imperfections and so on. According to Esslinger (11] the
effect of the radial imperfections along with residual stresses account for 60%
of the reduction of the buckling load. 40% account for uneveness of the sup-
ported edges and loading imperfections. Further discussion can be found in
Knoedel/Ummenhofer/Brenner 1994 [24]. We assume that the total effect of
imperfection is composed as follows: 50% radial imperfections: 10% residual
stresses; 40% support and loading imperfections and other effects. Assuming
that the imperfection depth is proportional to the reduction of the buckling
load the design imperfection may be chosen as

100
(w0/T), = 0%

= =55 (90l Tiim =2 (w0/ Ty (13)

This imperfection model covers silo shells and other civil engineering structures,
where strakes are joined by circumferential welds. In this case, the radial random
imperfections of the strake outside the region of the weld depression have much less
effect, so they do not need to be taken into consideration.

3.3 Level II: Random Imperfections

If a shell structure is stiffened by ring stiffeners, the detrimental effect of the cir-
cumferential weld is counteracted by the ring stiffener. In this case it is sufficient to
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impose random imperfections, which reduce the buckling strength much less than
the above axisymmetric imperfections. This holds for shell structures as well, which
do consist of a single strake only.

For numerical calculations one has to generate a random imperfection pattern which
exhibits features as described by Ummenhofer/Knoedel ([38] section 3.3 fig. 10). For
specific manufacturing techniques the Fourier-harmonics of the coefficients A. B, C.
D might be approximated by simple relations.

The maximum normalised deviation should be chosen to be equal to the design
imperfection depth above.

3.4 Loading Imperfections

If loading imperfections such as uneven edge loads or unintended edge moments can
be described, they do not have to be accounted for separately by increasing the
design imperfection depth as shown above.

This holds for edge moments which are induced by misalignment of adjacent shel:
strakes (compare Knoedel/Maierhoefer 1989 [23]). Another typical example woulc
be an elevated silo, where the load concentrations due to the single columns are mod-

élled realistically in the numerical model (compare Knoedel/Ummenhofer/Brenner
1994 [24]).

3.5 Material Imperfections

Material imperfections such as an orthotropic distribution of Young’s modulus or
inhomogenities in the wall thickness or yield sirength with steel shells have compar-
atively little effect, so they can be neglected in design.

4 Conclusions

Different models of substitute imperfections have been discussed and comparea.
Main difference is the effort, which has to be undergone when applying the differen:
models. Therefore a two-level approach has been proposed for the design of silo
shells.

On Level I a simple axisymmetric imperfection is used, which can be introduced into
the FE model with little effort. With this imperfection buckling loads are obtained.
which match about the lower bound of the known experiments.
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On Level II a random imperfection is used, the shape of which corresponds to
individual techniques of manufacturing single strakes. This imperfection may be
used if there is no circumferential weld or the negative effects of depressions due to
weld shrinkage are counteracted by ring stiffeners. The buckling loads obtained may
be clearly higher than the lower bound of the experimental evidence.

The imperfections on both levels may be calibrated to the quality of the workman-
ship of the producer. Thus, it would be possible to design for less imperfections and
subsequently higher buckling loads. if shallower imperfections can be controlled by
a more sophisticated manufacturing technique.
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